
Notes on Diffusion Models

Karthik Balaji O

Derivation of the log likelihood lower bound
One can view a diffusion model as a hirearchical VAE with the following caveats:

• The encoder is not learned but is a pre-defined function, specifically, a normal distribution centered around the latent
at the previous timestep.

• The latent dimension is equal to the data dimension.
• The latent distribution approaches the standard normal distribution as the number of

timesteps approaches infinity.
The probability of the trajectory x1 :T given the initial data point x0 is

q(x0 :T | x0) =
T∏

t = 1
q(xt | xt−1) (1)

where T is the total number of timesteps. The probability of the reverse trajectory x0 :T given a latent xT sampled from a
standard normal is

p(x0 :T) = p(xT)
T∏

t = 1
pθ(xt−1 | xt) (2)

We need to maximize the log likelihood of the data point

log p(x) = log
∫

x1 :T

p(x0 :T) dx1 :T

= log
∫

x1 :T

q(x1 :T | x0) p(x0 :T)
q(x1 :T | x0) dx1 :T

= logEq(x1 :T | x0)

[
p(x0 :T)

q(x1 :T | x0)

]
≥ Eq(x1 :T | x0)

[
log p(x0 :T)

q(x1 :T | x0)

]
(Jensen’s inequality)

= Eq(x1 :T | x0)

[
log p(xT)

∏T
t = 1 pθ(xt−1 | xt)∏T

t = 1 q(xt | xt−1)

]

= Eq(x1 :T | x0)

[
log p(xT)pθ(x0 | x1)

∏T
t = 2 pθ(xt−1 | xt)

q(x1 | x0)
∏T

t = 2 q(xt | xt−1)

]

Now we need to use a notational trick. We write q(xt | xt−1) above as q(xt | xt−1, x0) and use Bayes’ rule

q(xt | xt−1, x0) = q(xt | x0)q(xt−1 | xt , x0)
q(xt−1 | x0) (3)

Adding the extra x0 dependence doesn’t change the distribution since the forward and backward diffusion processes are
Markovian. But conceptually, we are reducing the variance of the distribution estimate by making xt depend on x0 as well,

1

and it lets us simplify the expression for the log likelihood. We can now write

log p(x) ≥ Eq(x1 :T | x0)

log p(xT)pθ(x0 | x1)
∏T

t = 2 pθ(xt−1 | xt)
q(x1 | x0)

∏T
t = 2

q(xt | x0)q(xt−1 | xt , x0)
q(xt−1 | x0)

= Eq(x1 :T | x0)

[
log p(xT)pθ(x0 | x1)

q(x1 | x0)

T∏
t = 2

pθ(xt−1 | xt)
q(xt−1 | xt , x0)

T∏
t = 2

q(xt−1 | x0)
q(xt | x0)

]

= Eq(x1 :T | x0)

[
log p(xT)pθ(x0 | x1)

q(xT | x0)

T∏
t = 2

pθ(xt−1 | xt)
q(xt−1 | xt , x0)

]

= Eq(x1 | x0) [log pθ(x0 | x1)] + Eq(xT | x0)

[
log p(xT)

q(xT | x0)

]
+

T∑
t = 2

Eq(xt−1, xt | x0)

[
log pθ(xt−1 | xt)

q(xt−1 | xt , x0)

]
The second term can go away since it doesn’t depend on parameters θ. For the last term, we can bring the expectation
over xt−1 inside

log p(x) ≥ Eq(x1 | x0) [log pθ(x0 | x1)] −
T∑

t = 2
Eq(xt | x0) [DKL(q(xt−1 | xt , x0) || pθ(xt−1 | xt)] (4)

and this is the lower bound of the objective we need to maximize.

Reparametrization trick
The variance follows a schedule over T timesteps - β1, . . . ,βT . We let α = 1 − β. At each timestep, we have

xt ∼ N (xt |
√
αt xt−1, (1 − αt)I) (5)

Sampling is of course, not differentiable. So we have to make use of the reparametrization trick. Define ᾱt =
∏t

i = 1 αi .
Then

xt = √
αt xt−1 + (1 − αt) ϵ∗t−1

= √
αt

(√
αt−1 xt−2 + (1 − αt−1) ϵ∗t−2

)
+ (1 − αt) ϵ∗t−1

= √
αtαt−1 xt−2 +

√
1 − αt αt−1 ϵt−2 (using N (µ1,σ2

1) + N (µ2,σ2
2) = N (µ1 + µ2,σ2

1 + σ2
2))

= . . .

=

√√√√ t∏
i = 1

αi x0 +

√√√√1 −
t∏

i = 1
αi ϵ0

=
√
ᾱt x0 +

√
1 − ᾱt ϵ0 (ϵ0 ∼ N (0, I))

Forward diffusion process posterior
How do we actually compute the KL divergence term in the sum in equation (4)? We first need to know what q(xt−1 | xt , x0)
is. Using Bayes’ rule

q(xt−1 | xt , x0) = q(xt | xt−1, x0)q(xt−1 | x0)
q(xt | x0) (6)

We have defined q as a Gaussian. Using the reparametrization trick, we know that

q(xt | x0) = N (xt |
√
ᾱtx0, (1 − ᾱt)I)

q(xt−1 | x0) = N (xt−1 |
√

ᾱt−1x0, (1 − ᾱt−1)I)

and according to equation (5), we have

q(xt | xt−1, x0) = q(xt | xt−1) = N (xt |
√
αtxt−1, (1 − αt)I)

2

Substituting these into equation (6) and simplifying, we get

q(xt−1 | xt , x0) = N (xt |
√
αtxt−1, (1 − αt)I)N (xt−1 |

√
ᾱt−1x0, (1 − ᾱt−1)I

N (xt |
√
ᾱtx0, (1 − ᾱt)I)

(7)

We now look at the coefficients. Let’s consider the product of coefficients of the Gaussians in the numerator by the
coefficient of the Gaussian in the denominator

(2π β̃)− d
2 = (2π (1 − αt))−

d
2 (2π (1 − ᾱt−1))− d

2

(2π (1 − ᾱt))−
d
2

(8)

So the overall variance β̃ is
β̃ = (1 − αt)(1 − ᾱt−1)

1 − ᾱt
(9)

The d in the exponent comes from the fact that we’re dealing with a multivariate Gaussian and is the data dimensionality.
We now consider the desired functional form (that of a Gaussian), which is on the left, and the expression for the forward
posterior on the right. We’re ignoring the constant in front of the Gaussian distribution expression for now. We have

exp
{
− 1

2 β̃
(xt−1 − µ̃)2

}
= exp

{
−
[(xt −

√
αt xt−1)2

2 (1 − αt)
+ (xt−1 −

√
ᾱt−1 x0)2

2 (1 − ᾱt−1) − (xt −
√
ᾱt x0)2

2 (1 − ᾱt)

]}
= exp

{
−1

2

[
1 − ᾱt

(1 − αt)(1 − ᾱt−1)x2
t−1 − 2

(√
αt

1 − αt
xt +

√
ᾱt−1

1 − ᾱt−1
x0

)
xt−1 + f (xt , x0)

]}
where we expanded the terms and seperated the xt−1 terms. f (xt , x0) is a constant w.r.t xt−1 and we’re using it to denote
the rest of the expansion. Note that the coefficient of x2

t−1 is the inverse of the variance β̃. We factor out 1
β̃

exp
{
− 1

2 β̃
(xt−1 − µ̃)2

}
= exp

− 1
2 β̃

x2
t−1 − 2

(√
αt (1 − ᾱt−1)

1 − ᾱt
xt +

√
ᾱt−1 (1 − αt)

1 − ᾱt
x0

)
︸ ︷︷ ︸

µ̃

xt−1 + β̃ f (xt , x0)︸ ︷︷ ︸
µ̃2

The β̃ f (xt , x0) term simplifies to µ̃2 above, and so we have a complete square in the exponent by setting

µ̃(xt , x0) =
√
αt (1 − ᾱt−1)

1 − ᾱt
xt +

√
ᾱt−1 (1 − αt)

1 − ᾱt
x0 (10)

So we arrive at the forward diffusion process posterior distribution

q(xt−1 | xt , x0) = N (xt−1 | µ̃(xt , x0), β̃)

= N
(

xt−1 |
√
αt (1 − ᾱt−1)

1 − ᾱt
xt +

√
ᾱt−1 (1 − αt)

1 − ᾱt
x0, (1 − αt)(1 − ᾱt−1)

1 − ᾱt

) (11)

The loss function
We now simplify the KL divergence in equation (4). We need to consider the KL divergence between two multivariate
Gaussians. The KL divergence between two Gaussians is given by

DKL (N (x |µ1, Σ1) ∥N (x |µ2, Σ2)) = 1
2

[
log |Σ2|

|Σ1|
− d + tr

(
Σ−1

2 Σ1
)

+ (µ2 − µ1)T Σ−1
2 (µ2 − µ1)

]
(11)

Our covariance matrices are diagonal matrices. For a particular timestep t in the sum in equation (4), the mean of the
forward posterior is given by equation (10), denoted by µq(xt , x0). We define the functional form of the mean predicted by
the neural net for the reverse distribution as

µθ(xt , t) =
√
αt (1 − ᾱt−1)

1 − ᾱt
xt +

√
ᾱt−1 (1 − αt)

1 − ᾱt
x̂θ(xt , t) (12)

The KL divergence at timestep t - after all this derivation - simplifies to

DKL(q(xt−1 | xt , x0) ∥ pθ(xt−1 | xt , x0)) = 1
βt

ᾱt−1(1 − α)2

(1 − ᾱt)2) ∥x̂θ(xt , t) − x0∥2 (13)

3

If we solve for x0 in equation we derived for reparametrization, we’ll get

x0 = 1√
ᾱt

xt −
√

1 − ᾱt√
ᾱt

ϵ0 (14)

If we substitute this in equation (10), simplify, and reframe the functional form of the mean of the reverse distribution by
replacing x̂θ(xt , t) with ϵ̂θ(xt , t), we’ll get

DKL(q(xt−1 | xt , x0) ∥ pθ(xt−1 | xt , x0)) = 1
βt

(1 − α)2

(1 − ᾱt)αt
∥ϵ̂θ(xt , t) − ϵ0∥2 (15)

Ho et al. found that ignoring the constant in front gave better results. They also chose to not add noise for the first
timestep, so they dropped the reconstruction term in (4) as well. Subsituting (15) in equation (4), our loss function is

L(θ) =
T∑

t = 2
Eq(xt | x0)

[
∥ϵθ(xt , t) − ϵ0∥2] (16)

The incredible thing is after all this derivation, the loss function is just the sum of mean squared error between the predicted
noise and the true noise over all timesteps. The training algorithm just falls out the loss function: until convergence,
we randomly choose an image, randomly choose a timestep, sample ϵ0 from a standard normal, sample xt using the
reparametrization trick, compute ∥ϵθ(xt , t) − ϵ0∥2, and backprop.

4

